

Prepared by:-

Asst. Lec. Jinan N. Shehab

University Of Diyala

College Of Engineering

Department of Communication

- 1. WHAT?
 - □ Introduction to Compressed Sensing (CS)
- 2. HOW?
 - □ Theory behind CS
- **3.** FOR WHAT PURPOSE?CS applications

1. WHAT?

Introduction to Compressed Sensing (CS)

2. HOW?Theory behind CS

3. FOR WHAT PURPOSE?CS applications

Shannon/Nyquist theorem

Compressed Sensing (CS)

<u>COMPRESSIVE SENSING:-</u> is new method to capture and represent sparse/compressible signals at the rate well below Nyquist's rate.

- 1. WHAT?
 - □ Introduction to Compressed Sensing (CS)

- 2. HOW?Theory behind CS
- **3.** FOR WHAT PURPOSE?CS applications

CS consists of two parts:-1- SAMPLING (ENCODING)

 When the signal is sparse/compressible, we can directly acquire a condensed representation with no/little information loss

Sparseness: less is more

- Pixels: not sparse 8
- A new domain can increase sparseness 🙂

Takigig alo Einsiteits

10% Fourier coeffs.

10% Wavelet coeffs.

Universality

 Random measurements can be used if signal is sparse/compressible in any basis

 $\mathbf{Y} = \boldsymbol{\phi} \mathbf{X} = \boldsymbol{\phi} \mathbf{\Omega} \mathbf{S} = \boldsymbol{\theta} \mathbf{S}$

θ = Compressive sensing Matrix

2- RECOVERY (DENCODING)

- Minimization of L1-norm
- Greedy techniques

- - -

- Iterative thresholding
- Total-variation minimization

1) Undersample

A camera or other device captures only a small, randomly chosen fraction of the pixels that normally comprise a particular image. This saves time and space.

2) Fill in the dots

An algorithm called l_1 minimization starts by arbitrarily picking one of the effectively infinite number of ways to fill in all the missing pixels.

3) Add shapes

The algorithm then begins to modify the picture in stages by laying colored shapes over the randomly selected image. The goal is to seek sparcity, a measure of image simplicity.

4) Add smaller shapes

The algorithm inserts the smallest number of shapes, of the simplest kind, that match the original pixels. If it sees four adjacent green pixels, it may add a green rectangle there.

5) Achieve clarity

Iteration after iteration, the algorithm adds smaller and smaller shapes, always seeking sparsity. Eventually it creates an image that will almost certainly be a near-perfect facsimile of a hi-res one.

- 1. WHAT?
 - Introduction to Compressed Sensing (CS)

- 2. HOW?Theory behind CS
- **3. FOR WHAT PURPOSE?**CS applications

Some CS applications

- Data compression
- Compressive imaging
- Detection, classification, estimation, learning...
- Medical imaging
- Analog-to-information conversion
- Geophysical data analysis
- Hyperspectral imaging
- Compressive radar
- Astronomy
- Communications
- Surface metrology
- Spectrum analysis

| Magnetic resonance imaging

Rice Single-Pixel CS Camera

Conclusions

- CS is a new technique for acquiring/ sensing and compressing Data simultaneously
- Sparseness + Incoherence + random sampling allows perfect reconstruction under some conditions
- A wide range of applications are possible
- Big research effort now on recovery techniques

